New Algebras of Functions on Topological Groups Arising from G-spaces
نویسنده
چکیده
For a topological group G we introduce the algebra SUC(G) of strongly uniformly continuous functions. We show that SUC(G) contains the algebra WAP (G) of weakly almost periodic functions as well as the algebras LE(G) and Asp(G) of locally equicontinuous and Asplund functions respectively. For the Polish groups of order preserving homeomorphisms of the unit interval and of isometries of the Urysohn space of diameter 1, we show that SUC(G) is trivial. We introduce the notion of fixed point on a class P of flows (P -fpp) and study in particular groups with the SUC-fpp. We study the Roelcke algebra (= UC(G) = right and left uniformly continuous functions) and SUC compactifications of the groups S(N), of permutations of a countable set, and H(C), the group of homeomorphisms of the Cantor set. For the first group we show that WAP (G) = SUC(G) = UC(G) and also provide a concrete description of the corresponding metrizable (in fact Cantor) semitopological semigroup compactification. For the second group, in contrast, we show that SUC(G) is properly contained in UC(G). We then deduce that for this group UC(G) does not yield a right topological semigroup compactification.
منابع مشابه
Some New Algebras of Functions on Topological Groups Arising from G-spaces
We investigate new and old algebras of continuous functions on topological groups G arising from G-spaces and some associated linear representations G → Iso (V ) on Banach spaces V . The topological group G = H+[0, 1] of orientation preserving homeomorphisms on the closed interval does not admit non-trivial continuous representations G → Iso (V ) when V is a reflexive Banach space (an equivalen...
متن کاملOn categories of merotopic, nearness, and filter algebras
We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...
متن کاملG-frames in Hilbert Modules Over Pro-C*-algebras
G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...
متن کاملNew best proximity point results in G-metric space
Best approximation results provide an approximate solution to the fixed point equation $Tx=x$, when the non-self mapping $T$ has no fixed point. In particular, a well-known best approximation theorem, due to Fan cite{5}, asserts that if $K$ is a nonempty compact convex subset of a Hausdorff locally convex topological vector space $E$ and $T:Krightarrow E$ is a continuous mapping, then there exi...
متن کاملTowards Oka-cartan Theory for Algebras of Holomorphic Functions on Coverings of Stein Manifolds I
We develop complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds. This, in particular, includes the results on holomorphic extension from complex submanifolds, corona type theorems, properties of divisors, holomorphic analogs of the Peter-Weyl approximation theorem, Hartogs type theorems, characterization of uniqueness sets. The model examples ...
متن کامل